metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[μ -4-(2-oxidobenzylidene)thiosemicarbazidato- $\kappa^4 S$, N^1 , O:O]bis[(pyridine- κN)zinc]

Reza Takjoo,^a Grzegorz Dutkiewicz,^b Mehdi Ahmadi^c and Maciej Kubicki^b*

^aDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad 91775–1436, Iran, ^bDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60–780 Poznań, Poland, and ^cDepartment of Chemistry, Payame Noor University (PNU), Mashhad, Iran Correspondence e-mail: mkubicki@amu.edu.pl

Received 4 December 2011; accepted 22 December 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.031; wR factor = 0.082; data-to-parameter ratio = 15.0.

In the title compound, $[Zn_2(C_8H_7N_3OS)_2(C_5H_5N)_2]$, the Zn_2O_2 ring has a flattened roof shape, with the roof angle equal to 10.10 (6)°. The thiosemicarbazones act as tridentate ligands to one Zn^{II} atom, with the O atoms additionally in bridging positions to the second Zn^{II} atom. Both Zn^{II} atoms are five-coordinated; the coordination polyhedra are close to square pyramids, with the pyridine N atoms at apical positions. Two intermolecular $N-H\cdots N$ and one relatively weak $N-H\cdots S$ hydrogen bond, together with $C-H\cdots S$ weak interactions, connect the molecules into a three-dimensional network.

Related literature

For thiosemicarbazones and their biological activity, see: Alomar *et al.* (2009); Geweely (2009); Hakimi *et al.* (2010); Hellmich *et al.* (2004); Joseph *et al.* (2004); Latheef *et al.* (2007); For background to the Cambridge Structural Database, see: Allen (2002). For similar Zn complexes, see: Cui & Hu (1994); Ma *et al.* (1996).

Experimental

Crystal data

 $[Zn_2(C_8H_7N_3OS)_2(C_5H_5N)_2]$ $M_r = 675.45$ Monoclinic, $P2_1/c$ a = 10.2641 (3) Å b = 17.3160 (6) Å c = 16.6473 (5) Å $\beta = 104.706$ (3)°

Data collection

Agilent SuperNova Single source at offset Atlas diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2011) $T_{\rm min} = 0.82$, $T_{\rm max} = 1.00$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.082$ S = 1.055646 reflections 377 parameters

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$		
$N12A - H12B \cdot \cdot \cdot N9B^{i}$	0.80 (5)	2.40 (5)	3.195 (4)	174 (6)		
$N12B - H12C \cdot \cdot \cdot S11A^{ii}$	0.77 (3)	2.74 (3)	3.510 (3)	177 (3)		
$N12B - H12D \cdots N9A^{iii}$	0.88 (3)	2.14 (3)	3.012 (3)	173 (3)		
$C17B - H17B \cdot \cdot \cdot S11A^{iv}$	0.93	2.91	3.772 (3)	156		
Symmetry codes: (i) $x - 1, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $x + 1, y, z$; (iii) $x + 1, -y + \frac{1}{2}, z + \frac{1}{2}$; (iv)						

 $V = 2861.85 (16) \text{ Å}^3$

 $0.30 \times 0.15 \times 0.10 \text{ mm}$

10543 measured reflections

5646 independent reflections 4967 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Cu Ka radiation

 $\mu = 3.76 \text{ mm}^-$

T = 295 K

 $R_{\rm int} = 0.024$

refinement $\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\min} = -0.41 \text{ e} \text{ Å}^{-3}$

Z = 4

Symmetry codes: (i) $x - 1, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) x + 1, y, z; (iii) $x + 1, -y + \frac{1}{2}, z + \frac{1}{2}$; (iv) $-x + 2, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

The authors are grateful to the Ferdowsi University of Mashhad for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2324).

References

- Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Alomar, K., Khan, M. A., Allain, M. & Bouet, G. (2009). Polyhedron, 28, 1273–1280.
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Cui, X.-G. & Hu, Q.-P. (1994). Jiegou Huaxue (Chin. J. Struct. Chem.), 13, 340-342.
- Geweely, S. G. (2009). Arch. Microbiol. 191, 687-695.
- Hakimi, M., Takjoo, R., Erfaniyan, V., Schuh, E. & Mohr, F. (2010). *Transition Met. Chem.* 35, 959–965.
- Hellmich, H. L., Frederickson, C. J., DeWitt, D. S., Saban, R., Parsley, M. O., Stephenson, R., Velasco, M., Uchida, T., Shimamura, M. & Prough, D. S. (2004). *Neurosci. Lett.* 355, 221–225.
- Joseph, M., Suni, V., Kurup, M. R. P., Nethaji, M., Kishore, A. & Bhat, S. G. (2004). Polyhedron, 23, 3069–3080.

- Latheef, L., Manoj, E. & Prathapachandra Kurup, M. R. (2007). *Polyhedron*, **26**, 4107–4113.
- Ma, C.-Q., Wang, X.-N., Zhang, W.-X., Yu, Z.-G., Jiang, D.-H. & Dong, S.-L. (1996). Huaxue Xuebao (Acta Chim. Sin.), 54, 562–567.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2012). E68, m106-m107 [doi:10.1107/S160053681105522X]

Bis[μ -4-(2-oxidobenzylidene)thiosemicarbazidato- $\kappa^4 S, N^1, O:O$]bis[(pyridine- κN)zinc]

R. Takjoo, G. Dutkiewicz, M. Ahmadi and M. Kubicki

Comment

Thiosemicarbazones occupy important class of *N*,*S*–donor ligands due to their great versatility (*e.g.*, Alomar *et al.*, 2009). Their complexes with transition metals have been subject of considerable interest because of their chemical and biological properties. The most important biological activities are antiviral, antifungal, antibacterial, antitumor, anticancerogenic and insulinmimetic properties (Hakimi *et al.*, 2010).

The biological activity is due to the ability to form tridentate chelates with metal ions bonding through oxygen, nitrogen and sulfur atoms (Joseph *et al.*, 2004). Zinc is essential ion to play an important role in various biological systems and may be its presence in certain metalloenzymes (Hellmich *et al.*, 2004). The Zn(II) ion has been found to be of catalytic importance in enzymatic reactions (Latheef *et al.*, 2007). The enhancement of antitumor activity of some thiosemicarbazones in the presence of Zn(II) ions has been reported (Geweely, 2009).

Herein we report the synthesis and crystal structure of new Zn(II) comа bis($(\mu^2$ -salicylidenealdiminato-N-thiosemicarbazono-O,O,S,N)-(pyridine-N)-Zn(II) plex. (Scheme 1). Some crystal structures similar dinuclear of Zn(II) complexes have been reported earli-(µ2-hydroxo)-(µ2-2,6-diformyl-4-methylphenolatobis(thiosemicarbazone))-dipyridyl-di-zinc er, pyride.g. bis((µ2-6-methoxysalicylidenealdiminato-N-thiosemicarbazonoine solvate (Ma 1996), et al., or O,O,S,N)-(dimethylformamide-O)-Zn(II)) (Cui & Hu, 1994).

Each of the thiosemicarbazone fragments acts as a tetradentate ligand, with oxygen atoms in bridging positions. Both Zn atoms are 5–coordinated with the coordination scheme close to square pyramid, the pyridine nitrogen atoms occupy apical positions. The four base atoms are coplanar within 0.0192 (9)Å (around Zn1) and 0.0532 (10)Å (Zn2), while the Zn and pyridine N atoms are out of these planes by 0.5273 (8)Å and -2.612 (2)Å (Zn1) and by 0.5023 (8)Å and 2.586 (2)Å (Zn2). The two apical pyridine fragments make dihedral angle of only 19.91 (8)°. The Zn₂O₂ ring has a flattened roof shape, with the roof angle (defined as the dihedral angle between two ZnO₂ planes) equal to 10.10 (6)°. This value is close to the mean value found for 752 fragments from the Cambridge Structural Database (Allen, 2002), of 12°. It might be noted however that in the majority of these complexes the ZnOZnO fragment is planar due to its symmetry.

Two thiosemicarbazone molecules have very similar geometries, with elongated C—O and C—S bonds, due to involvement of the heteroatoms in the coordination. The chain fragments are in extended conformation, the whole chains are approximately - within 0.131 (2)Å and 0.0495 (16)Å - planar, and their mean planes are not far from coplanarity with the ring, the dihedral angles between the mean planes are 14.62 (12)° and 16.45 (8)°.

In the crystal structure there are two classical intermolecular N—H···N and one N—H···S relatively weak hydrogen bonds, which together with non–classical C—H···S weak interaction, connect molecules into three–dimensional network.

Experimental

To a solution of the $Zn(OAc)_2 \times 2H_2O$ (0.22 g, 1.0 mmol) in boiling 10 ml of ethanol was added a boiling solution of the 2–(2–hydroxybenzylidene)hydrazinecarbothioamide (0.20 g, 1.0 mmol) in the same solvent (10 ml) and pyridine (0.12 g, 1.5 mmol). The mixture was heated on a water bath for 1 h and left to stand for 3 days when the complexes generally crystallized from the reaction mixture. The products were filtered, washed with ethanol and dried in air.

Refinement

The hydrogen atoms from NH₂-groups were found in difference Fourier map and freely refined. All other hydrogen atoms were generated geometrically and refined as a riding model with their $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. Molecular complex with tha atom numbering scheme. Displacement ellipsoids are presented at 50% probability level. Hydrogen atoms are depicted as a small spheres with arbitrary radii.

Fig. 2. The packing diagram of title compound. View along *c*-direction. Hydrogen bonds are shown as dashed lines.

Bis[μ -4-(2-oxidobenzylidene)thiosemicarbazidato- $\kappa^4 S, N^1, O:O$]bis[(pyridine- κN)zinc]

Crystal data

	F(000) 107(
$[2n_2(C_8H_7N_3OS)_2(C_5H_5N)_2]$	F(000) = 13/6
$M_r = 675.45$	$D_{\rm x} = 1.568 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Cu K α radiation, $\lambda = 1.54178$ Å
Hall symbol: -P 2ybc	Cell parameters from 3324 reflections
a = 10.2641 (3) Å	$\theta = 3-27^{\circ}$
b = 17.3160 (6) Å	$\mu = 3.76 \text{ mm}^{-1}$
c = 16.6473 (5) Å	T = 295 K
$\beta = 104.706 \ (3)^{\circ}$	Block, colourless
$V = 2861.85 (16) \text{ Å}^3$	$0.3\times0.15\times0.1~mm$
7 = 1	

Data collection

$\mathbf{A} = 1 + \mathbf{C} + \mathbf{C} + \mathbf{N} + \mathbf{C} + $	5 C A C : 1 1 C
A glient SuperNova Single source at ottset Atlas	5646 independent reflections
	1

diffractometer

Radiation source: SuperNova X-ray Source	4967 reflections with $I > 2\sigma(I)$
mirror	$R_{\rm int} = 0.024$
Detector resolution: 10.5357 pixels mm ⁻¹	$\theta_{\text{max}} = 75.5^{\circ}, \ \theta_{\text{min}} = 3.8^{\circ}$
ω scan	$h = -12 \rightarrow 12$
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011)	$k = -21 \rightarrow 21$
$T_{\min} = 0.82, \ T_{\max} = 1.00$	$l = -20 \rightarrow 15$
10543 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.082$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.05	$w = 1/[\sigma^2(F_o^2) + (0.0412P)^2 + 0.4387P]$ where $P = (F_o^2 + 2F_c^2)/3$
5646 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
377 parameters	$\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.41 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotrol	pic or	r ea	uivalent	isotro	pic dis	placement	parameters	$(\AA^2$	1
1 / 00011011011	aronne	coontainates	~~~~~	1501101	10 01	~ ~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100110		pracement	parameters	(* *	/

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.69348 (3)	0.151423 (17)	0.675727 (17)	0.03492 (9)
Zn2	0.99909 (3)	0.106406 (16)	0.765896 (16)	0.03350 (8)
01A	0.87115 (14)	0.12696 (9)	0.64931 (8)	0.0375 (3)
C1A	0.9113 (2)	0.13850 (12)	0.57968 (12)	0.0342 (4)
C6A	1.0204 (3)	0.09720 (16)	0.56694 (15)	0.0502 (6)
H6A	1.0612	0.0602	0.6057	0.060*
C5A	1.0698 (3)	0.10973 (19)	0.49806 (17)	0.0638 (8)
H5A	1.1445	0.0823	0.4917	0.077*

C4A	1.0085 (3)	0.16296 (19)	0.43875 (17)	0.0637 (8)
H4A	1.0422	0.1721	0.3928	0.076*
C3A	0.8978 (3)	0.20210 (17)	0.44817 (15)	0.0514 (6)
H3A	0.8554	0.2367	0.4071	0.062*
C2A	0.8456 (2)	0.19183 (13)	0.51808 (12)	0.0357 (4)
C7A	0.7266 (2)	0.23507 (13)	0.51998 (13)	0.0385 (5)
H7A	0.6974	0.2720	0.4788	0.046*
N8A	0.65690 (17)	0.22690 (11)	0.57391 (11)	0.0371 (4)
N9A	0.5388 (2)	0.26953 (14)	0.55813 (13)	0.0520 (5)
C10A	0.4838 (2)	0.27287 (17)	0.62098 (16)	0.0543 (6)
S11A	0.55217 (6)	0.23729 (4)	0.72104 (4)	0.04851 (15)
N12A	0.3637 (3)	0.3092 (3)	0.6074 (2)	0.0974 (13)
H12A	0.323 (5)	0.304 (3)	0.645 (3)	0.120 (16)*
H12B	0.322 (5)	0.313 (3)	0.560 (3)	0.15 (2)*
N13A	0.58207 (19)	0.05185 (12)	0.63312 (11)	0.0442 (4)
C14A	0.4532 (3)	0.04424 (18)	0.63634 (17)	0.0598 (7)
H14A	0.4076	0.0872	0.6488	0.072*
C15A	0.3874 (3)	-0.0251(2)	0.6217 (2)	0.0808 (10)
H15A	0.2980	-0.0292	0.6239	0.097*
C16A	0.4555 (4)	-0.0887(2)	0.6037 (2)	0.0929 (13)
H16A	0.4132	-0.1366	0.5953	0.112*
C17A	0.5849 (4)	-0.0810(2)	0.5984 (2)	0.0856 (11)
H17A	0.6321	-0.1231	0.5856	0.103*
C18A	0.6442 (3)	-0.00951(17)	0.61249 (17)	0.0591 (7)
H18A	0.7318	-0.0038	0.6074	0.071*
O1B	0.81432 (14)	0.11522 (10)	0.78830 (9)	0.0421 (4)
C1B	0.7831 (2)	0.09209(13)	0.85795 (13)	0.0371(4)
C6B	0.6525 (2)	0.06964(17)	0.85587 (15)	0.0527 (6)
H6B	0.5868	0.0725	0.8059	0.063*
C5B	0.6168 (3)	0.0432 (2)	0.92560 (17)	0.0659 (8)
H5B	0.5286	0.0279	0.9219	0.079*
C4B	0.7121 (3)	0.0395(2)	1.00065 (17)	0.0671 (9)
H4B	0.6894	0.0211	1.0478	0.081*
C3B	0.8406 (3)	0.06347 (18)	1.00472 (15)	0.0562 (7)
H3B	0.9042	0.0619	1.0557	0.067*
C2B	0.8803 (2)	0.09033 (14)	0.93500 (13)	0.0387 (5)
C7B	1.0179 (2)	0.11677 (15)	0.94866 (14)	0.0441 (5)
H7B	1.0676	0.1225	1.0034	0.053*
N8B	1.07691 (17)	0.13298 (11)	0.89124 (11)	0.0373 (4)
N9B	1.20725 (18)	0.16078 (12)	0.91816 (12)	0.0444 (4)
C10B	1.2639 (2)	0.17693 (13)	0.85755 (14)	0.0394 (5)
S11B	1.19620 (5)	0.16312 (4)	0.75090 (3)	0.04356 (14)
N12B	1.3873 (2)	0.20863 (17)	0.87933 (16)	0.0588 (6)
H12C	1.425 (3)	0.2133 (17)	0.8447 (18)	0.056 (9)*
H12D	1.427 (3)	0.2123 (18)	0.9327 (19)	0.065 (9)*
N13B	1.02303 (19)	-0.01384 (11)	0.76976 (11)	0.0408 (4)
C14B	0.9228 (3)	-0.06138 (15)	0.77443 (16)	0.0510 (6)
H14B	0.8382	-0.0406	0.7717	0.061*
C15B	0.9403 (4)	-0.14009 (16)	0.78314 (19)	0.0645 (8)
		· · ·	· · ·	· · ·

H15B	0.8681	-0.1719	0.7850	0.077*
C16B	1.0642 (4)	-0.17070 (17)	0.78893 (19)	0.0712 (9)
H16B	1.0782	-0.2236	0.7961	0.085*
C17B	1.1681 (3)	-0.12304 (17)	0.78416 (19)	0.0678 (8)
H17B	1.2534	-0.1430	0.7874	0.081*
C18B	1.1437 (3)	-0.04431 (15)	0.77445 (15)	0.0514 (6)
H18B	1.2142	-0.0117	0.7711	0.062*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.02750 (14)	0.04156 (17)	0.03582 (15)	-0.00054 (11)	0.00824 (11)	0.00450 (11)
Zn2	0.02757 (14)	0.03770 (16)	0.03524 (15)	0.00084 (10)	0.00802 (10)	0.00295 (11)
O1A	0.0298 (7)	0.0517 (9)	0.0319 (7)	0.0043 (6)	0.0096 (5)	0.0079 (6)
C1A	0.0303 (10)	0.0404 (11)	0.0324 (10)	-0.0026 (8)	0.0091 (8)	-0.0011 (8)
C6A	0.0496 (13)	0.0609 (16)	0.0434 (12)	0.0145 (12)	0.0180 (10)	0.0040 (11)
C5A	0.0580 (16)	0.090 (2)	0.0519 (15)	0.0210 (15)	0.0290 (13)	-0.0017 (15)
C4A	0.0638 (17)	0.092 (2)	0.0447 (14)	0.0105 (15)	0.0316 (13)	0.0073 (14)
C3A	0.0545 (14)	0.0647 (16)	0.0390 (12)	0.0003 (12)	0.0193 (10)	0.0099 (11)
C2A	0.0339 (10)	0.0402 (11)	0.0335 (10)	-0.0043 (8)	0.0094 (8)	0.0016 (9)
C7A	0.0366 (11)	0.0441 (12)	0.0337 (10)	-0.0013 (9)	0.0068 (8)	0.0066 (9)
N8A	0.0285 (8)	0.0443 (10)	0.0375 (9)	0.0041 (7)	0.0069 (7)	0.0049 (8)
N9A	0.0368 (10)	0.0699 (14)	0.0503 (11)	0.0191 (10)	0.0126 (8)	0.0167 (10)
C10A	0.0385 (12)	0.0679 (17)	0.0583 (15)	0.0175 (12)	0.0159 (11)	0.0107 (13)
S11A	0.0420 (3)	0.0618 (4)	0.0461 (3)	0.0088 (3)	0.0193 (2)	0.0043 (3)
N12A	0.0647 (18)	0.162 (4)	0.073 (2)	0.063 (2)	0.0314 (16)	0.033 (2)
N13A	0.0395 (10)	0.0496 (11)	0.0419 (10)	-0.0086 (8)	0.0072 (8)	0.0003 (9)
C14A	0.0445 (14)	0.0732 (19)	0.0608 (16)	-0.0159 (13)	0.0117 (12)	-0.0041 (14)
C15A	0.0618 (19)	0.099 (3)	0.079 (2)	-0.0414 (19)	0.0130 (16)	-0.011 (2)
C16A	0.103 (3)	0.075 (2)	0.091 (3)	-0.051 (2)	0.008 (2)	-0.015 (2)
C17A	0.097 (3)	0.0586 (19)	0.094 (3)	-0.0134 (19)	0.012 (2)	-0.0234 (18)
C18A	0.0580 (16)	0.0554 (16)	0.0625 (16)	-0.0080 (13)	0.0128 (13)	-0.0090 (13)
O1B	0.0288 (7)	0.0654 (11)	0.0330 (7)	0.0019 (7)	0.0093 (6)	0.0104 (7)
C1B	0.0328 (10)	0.0458 (12)	0.0356 (10)	0.0008 (9)	0.0141 (8)	0.0051 (9)
C6B	0.0360 (12)	0.0794 (19)	0.0418 (12)	-0.0123 (12)	0.0081 (9)	0.0078 (12)
C5B	0.0415 (13)	0.103 (2)	0.0559 (15)	-0.0213 (15)	0.0174 (11)	0.0111 (16)
C4B	0.0536 (16)	0.107 (3)	0.0452 (14)	-0.0157 (16)	0.0207 (12)	0.0176 (15)
C3B	0.0437 (13)	0.088 (2)	0.0365 (12)	-0.0091 (13)	0.0093 (10)	0.0126 (13)
C2B	0.0351 (11)	0.0476 (12)	0.0352 (10)	-0.0025 (9)	0.0122 (8)	0.0014 (9)
C7B	0.0365 (11)	0.0619 (15)	0.0331 (11)	-0.0067 (10)	0.0073 (8)	-0.0006 (10)
N8B	0.0294 (8)	0.0444 (10)	0.0383 (9)	-0.0036 (7)	0.0092 (7)	-0.0019 (8)
N9B	0.0314 (9)	0.0592 (12)	0.0426 (10)	-0.0099 (8)	0.0091 (7)	-0.0058 (9)
C10B	0.0297 (10)	0.0423 (12)	0.0460 (12)	-0.0033 (9)	0.0090 (8)	-0.0017 (9)
S11B	0.0340 (3)	0.0560 (3)	0.0419 (3)	-0.0073 (2)	0.0119 (2)	0.0032 (2)
N12B	0.0378 (11)	0.0901 (19)	0.0503 (13)	-0.0206 (11)	0.0144 (10)	-0.0047 (13)
N13B	0.0441 (10)	0.0380 (10)	0.0388 (10)	0.0048 (8)	0.0078 (7)	0.0041 (8)
C14B	0.0553 (14)	0.0428 (13)	0.0532 (14)	-0.0043 (11)	0.0108 (11)	-0.0002 (11)
C15B	0.083 (2)	0.0447 (15)	0.0631 (17)	-0.0107 (14)	0.0144 (15)	0.0017 (13)

C16B	0.104 (3)	0.0379 (14)	0.0656 (19)	0.0098 (16)	0.0111 (17)	0.0048 (13)
C17B	0.075 (2)	0.0560 (17)	0.0676 (18)	0.0272 (16)	0.0085 (15)	0.0019 (14)
C18B	0.0511 (14)	0.0506 (14)	0.0514 (14)	0.0103 (11)	0.0110 (11)	0.0043 (11)
Geometric paran	neters (Å, °)					
Zn1—O1A		2.0263 (14)	C16A	—C17A	1.36	60 (6)
Zn1—O1B		2.0647 (14)	C16A	—Н16А	0.93	300
Zn1—N13A		2.0909 (19)	C17A	—C18A	1.37	73 (4)
Zn1—N8A		2.0974 (18)	C17A	—H17A	0.93	300
Zn1—S11A		2.3322 (6)	C18A	—H18A	0.93	300
Zn2—O1B		2.0294 (15)	O1B-	C1B	1.34	40 (2)
Zn2—O1A		2.0795 (14)	C1B-	—С6В	1.38	38 (3)
Zn2—N8B		2.0875 (18)	C1B-	–C2B	1.41	1 (3)
Zn2—N13B		2.0957 (19)	C6B-	—С5В	1.38	31 (3)
Zn2—S11B		2.3186 (6)	C6B-	H6B	0.93	300
O1A—C1A		1.340 (2)	C5B-	–C4B	1.37	79 (4)
C1A—C6A		1.390 (3)	C5B-	-H5B	0.93	300
C1A—C2A		1.417 (3)	C4B-	—С3В	1.36	58 (4)
C6A—C5A		1.384 (3)	C4B-	—H4B	0.93	300
С6А—Н6А		0.9300	C3B-	–C2B	1.40	03 (3)
C5A—C4A		1.380 (4)	C3B-	—Н3В	0.93	300
С5А—Н5А		0.9300	C2B-	—С7В	1.44	46 (3)
C4A—C3A		1.366 (4)	С7В-	N8B	1.28	36 (3)
C4A—H4A		0.9300	С7В-	—H7B	0.93	300
C3A—C2A		1.410 (3)	N8B-	N9B	1.38	35 (2)
СЗА—НЗА		0.9300	N9B-	C10B	1.31	6 (3)
C2A—C7A		1.440 (3)	C10B	—N12B	1.34	43 (3)
C7A—N8A		1.290 (3)	C10B	—S11B	1.75	51 (2)
C7A—H7A		0.9300	N12B	— Н12С	0.77	7 (3)
N8A—N9A		1.386 (2)	N12B	H12D	0.88	3 (3)
N9A-C10A		1.310 (3)	N13B	G-C18B	1.33	30 (3)
C10A—N12A		1.351 (3)	N13B	B—C14B	1.33	35 (3)
C10A—S11A		1.747 (3)	C14B	—C15B	1.37	78 (4)
N12A—H12A		0.84 (4)	C14B	—H14B	0.93	300
N12A—H12B		0.80 (5)	C15B	—C16B	1.35	59 (5)
N13A—C18A		1.328 (3)	C15B	—H15B	0.93	300
N13A—C14A		1.344 (3)	C16B	—C17B	1.36	66 (5)
C14A—C15A		1.369 (4)	C16B	—H16B	0.93	300
C14A—H14A		0.9300	C17B		1.38	38 (4)
C15A—C16A		1.377 (6)	C17B	—H17B	0.93	300
C15A—H15A		0.9300	C18B	—H18B	0.93	300
O1A—Zn1—O1B		76.54 (6)	C16A	—С15А—Н15А	120	.5
O1A—Zn1—N13	А	101.47 (7)	C17A	—C16A—C15A	119	.6 (3)
O1B—Zn1—N13	A	102.02 (7)	C17A	—С16А—Н16А	120	.2
O1A—Zn1—N8A	L Contraction of the second	86.63 (6)	C15A	—С16А—Н16А	120	.2
O1B—Zn1—N8A		149.97 (7)	C16A	—C17A—C18A	118	.4 (4)
N13A—Zn1—N8	А	105.63 (7)	C16A	—С17А—Н17А	120	.8
O1A—Zn1—S11A	4	150.62 (5)	C18A	—С17А—Н17А	120	.8

O1B—Zn1—S11A	100.35 (5)	N13A—C18A—C17A	123.0 (3)
N13A—Zn1—S11A	107.69 (6)	N13A—C18A—H18A	118.5
N8A—Zn1—S11A	82.28 (5)	C17A—C18A—H18A	118.5
O1B—Zn2—O1A	76.14 (6)	C1B—O1B—Zn2	125.18 (13)
O1B—Zn2—N8B	86.44 (6)	C1B—O1B—Zn1	130.98 (13)
O1A—Zn2—N8B	152.37 (7)	Zn2—O1B—Zn1	103.30 (6)
O1B—Zn2—N13B	100.18 (7)	O1B—C1B—C6B	120.23 (19)
O1A—Zn2—N13B	103.89 (7)	O1B—C1B—C2B	121.60 (19)
N8B—Zn2—N13B	100.15 (7)	C6B—C1B—C2B	118.17 (19)
O1B—Zn2—S11B	150.41 (5)	C5B—C6B—C1B	122.2 (2)
O1A—Zn2—S11B	100.87 (4)	C5B—C6B—H6B	118.9
N8B—Zn2—S11B	83.77 (5)	C1B—C6B—H6B	118.9
N13B—Zn2—S11B	108.99 (6)	C4B—C5B—C6B	119.9 (2)
C1A—O1A—Zn1	130.37 (13)	C4B—C5B—H5B	120.1
C1A—O1A—Zn2	124.97 (12)	C6B—C5B—H5B	120.1
Zn1—O1A—Zn2	102.89 (6)	C3B—C4B—C5B	119.0 (2)
O1A—C1A—C6A	119.5 (2)	C3B—C4B—H4B	120.5
O1A—C1A—C2A	121.95 (19)	C5B—C4B—H4B	120.5
C6A—C1A—C2A	118.6 (2)	C4B—C3B—C2B	122.6 (2)
C5A—C6A—C1A	121.7 (2)	C4B—C3B—H3B	118.7
С5А—С6А—Н6А	119.2	C2B—C3B—H3B	118.7
С1А—С6А—Н6А	119.2	C3B—C2B—C1B	118.2 (2)
C4A—C5A—C6A	120.0 (2)	C3B—C2B—C7B	116.8 (2)
С4А—С5А—Н5А	120.0	C1B—C2B—C7B	124.94 (19)
C6A—C5A—H5A	120.0	N8B—C7B—C2B	125.3 (2)
C3A—C4A—C5A	119.4 (2)	N8B—C7B—H7B	117.4
C3A—C4A—H4A	120.3	C2B—C7B—H7B	117.4
C5A—C4A—H4A	120.3	C7B—N8B—N9B	115.74 (18)
C4A—C3A—C2A	122.2 (2)	C7B—N8B—Zn2	124.19 (15)
С4А—С3А—НЗА	118.9	N9B—N8B—Zn2	119.54 (13)
С2А—С3А—НЗА	118.9	C10B—N9B—N8B	113.85 (18)
C3A—C2A—C1A	118.0 (2)	N9B—C10B—N12B	116.7 (2)
C3A—C2A—C7A	117.0 (2)	N9B—C10B—S11B	127.55 (17)
C1A—C2A—C7A	124.97 (19)	N12B-C10B-S11B	115.73 (18)
N8A—C7A—C2A	125.6 (2)	C10B—S11B—Zn2	94.66 (7)
N8A—C7A—H7A	117.2	C10B—N12B—H12C	117 (2)
С2А—С7А—Н7А	117.2	C10B—N12B—H12D	118 (2)
C7A—N8A—N9A	114.98 (18)	H12C—N12B—H12D	124 (3)
C7A—N8A—Zn1	127.86 (15)	C18B—N13B—C14B	118.1 (2)
N9A—N8A—Zn1	116.97 (14)	C18B—N13B—Zn2	119.74 (17)
C10A—N9A—N8A	113.92 (19)	C14B—N13B—Zn2	121.90 (17)
N9A—C10A—N12A	116.6 (3)	N13B—C14B—C15B	122.3 (3)
N9A—C10A—S11A	126.55 (18)	N13B—C14B—H14B	118.8
N12A—C10A—S11A	116.9 (2)	C15B—C14B—H14B	118.8
C10A—S11A—Zn1	92.79 (9)	C16B—C15B—C14B	119.2 (3)
C10A—N12A—H12A	116 (3)	C16B—C15B—H15B	120.4
C10A—N12A—H12B	116 (4)	C14B—C15B—H15B	120.4
H12A—N12A—H12B	120 (5)	C15B—C16B—C17B	119.4 (3)
C18A—N13A—C14A	118.3 (2)	C15B—C16B—H16B	120.3

C10A $N12A$ $7n1$	110.26 (17)	C17D C16D U16D	120.2
C14A $N13A$ $Zn1$	119.30 (17)	C16B-C17B-C18B	120.3 118.7(3)
N13A - C14A - C15A	121.70(13)	C16B - C17B - H17B	120.7
N13A - C14A - H14A	110.2	C_{18B} C_{17B} H_{17B}	120.7
$C_{15A} = C_{14A} = H_{14A}$	119.2	N13B C18B C17B	120.7 122.3(3)
C13A = C14A = M14A	119.2	N13D-C18D-C17D	122.3 (3)
C14A = C15A = C10A	119.0 (5)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.9
С14А—С15А—Н15А	120.5	С1/В—С18В—п18В	118.9
O1B—Zn1—O1A—C1A	-173.10 (19)	O1A—Zn2—O1B—C1B	164.28 (19)
N13A—Zn1—O1A—C1A	87.11 (19)	N8B—Zn2—O1B—C1B	-37.35 (18)
N8A—Zn1—O1A—C1A	-18.16 (18)	N13B—Zn2—O1B—C1B	62.33 (19)
S11A—Zn1—O1A—C1A	-85.9 (2)	S11B—Zn2—O1B—C1B	-108.09 (18)
O1B—Zn1—O1A—Zn2	-8.04 (7)	O1A—Zn2—O1B—Zn1	-8.06(7)
N13A—Zn1—O1A—Zn2	-107.83 (8)	N8B—Zn2—O1B—Zn1	150.32 (9)
N8A—Zn1—O1A—Zn2	146.89 (8)	N13B—Zn2—O1B—Zn1	-110.00 (8)
S11A—Zn1—O1A—Zn2	79.16 (10)	S11B—Zn2—O1B—Zn1	79.58 (11)
O1B—Zn2—O1A—C1A	174.33 (18)	O1A—Zn1—O1B—C1B	-163.4 (2)
N8B—Zn2—O1A—C1A	121.86 (18)	N13A—Zn1—O1B—C1B	-64.3 (2)
N13B—Zn2—O1A—C1A	-88.40 (17)	N8A—Zn1—O1B—C1B	138.90 (19)
S11B—Zn2—O1A—C1A	24.48 (17)	S11A—Zn1—O1B—C1B	46.4 (2)
O1B—Zn2—O1A—Zn1	8.20 (7)	O1A—Zn1—O1B—Zn2	8.26 (7)
N8B—Zn2—O1A—Zn1	-44.27 (17)	N13A—Zn1—O1B—Zn2	107.35 (8)
N13B—Zn2—O1A—Zn1	105.47 (8)	N8A—Zn1—O1B—Zn2	-49.41 (17)
S11B—Zn2—O1A—Zn1	-141.65 (5)	S11A—Zn1—O1B—Zn2	-141.87 (6)
Zn1—O1A—C1A—C6A	-160.87 (18)	Zn2—O1B—C1B—C6B	-152.5 (2)
Zn2—01A—C1A—C6A	37.0 (3)	Zn1—O1B—C1B—C6B	17.6 (3)
Zn1—O1A—C1A—C2A	19.1 (3)	Zn2—O1B—C1B—C2B	28.1 (3)
Zn2—O1A—C1A—C2A	-143.01 (16)	Zn1—01B—C1B—C2B	-161.84 (17)
O1A—C1A—C6A—C5A	-176.8 (3)	O1B—C1B—C6B—C5B	178.0 (3)
C2A—C1A—C6A—C5A	3.2 (4)	C2B—C1B—C6B—C5B	-2.5 (4)
C1A—C6A—C5A—C4A	-1.7 (5)	C1B—C6B—C5B—C4B	0.9 (5)
C6A—C5A—C4A—C3A	-0.9(5)	C6B—C5B—C4B—C3B	1.0 (6)
C5A - C4A - C3A - C2A	2.0 (5)	C5B-C4B-C3B-C2B	-13(5)
C4A - C3A - C2A - C1A	-0.4(4)	C4B— $C3B$ — $C2B$ — $C1B$	-0.3(4)
C4A - C3A - C2A - C7A	-1786(3)	C4B— $C3B$ — $C2B$ — $C7B$	177.6(3)
O1A - C1A - C2A - C3A	177.8 (2)	01B - 01B - 02B - 03B	-1784(2)
C6A - C1A - C2A - C3A	-22(3)	C_{B} C_{1B} C_{2B} C_{3B}	22(4)
$C_{0A} = C_{1A} = C_{2A} = C_{3A}$	-4.1(3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.2(4)
$C_{A} = C_{A} = C_{A}$	-4.1(3)	$C_{1B} = C_{1B} = C_{2B} = C_{7B}$	-175.6(2)
COA = CIA = CZA = C/A	173.9(2)	$C^{2}D = C^{2}D = C^{7}D = N^{2}D$	-1/3.0(3)
$C_{3A} = C_{2A} = C_{7A} = N_{8A}$	1/2.1(2)	$C_{3B} = C_{2B} = C_{1B} = N_{8B}$	109.7 (3)
CIA = CZA = C/A = N8A	-6.0(4)	C1B - C2B - C/B - N8B	-12.5 (4)
$C_2A = C/A = N8A = N9A$	-1/3.8(2)	C2B = C/B = N8B = N9B	1//.1 (2)
C2A—C/A—N8A—Zn1	1.1 (3)	C2B - C/B - N8B - Zn2	-11.3 (4)
OIA—ZnI—N8A—C/A	7.88 (19)	O1B—Zn2—N8B—C/B	28.7 (2)
O1B—Zn1—N8A—C7A	63.3 (3)	O1A—Zn2—N8B—C7B	79.2 (3)
N13A—Zn1—N8A—C7A	-93.1 (2)	N13B—Zn2—N8B—C7B	-71.0 (2)
S11A—Zn1—N8A—C7A	160.6 (2)	S11B—Zn2—N8B—C7B	-179.3 (2)
O1A—Zn1—N8A—N9A	-177.33 (17)	O1B—Zn2—N8B—N9B	-160.02 (17)
O1B—Zn1—N8A—N9A	-121.94 (17)	O1A—Zn2—N8B—N9B	-109.53 (19)
N13A—Zn1—N8A—N9A	81.69 (17)	N13B—Zn2—N8B—N9B	100.26 (17)

S11A—Zn1—N8A—N9A	-24.60 (16)	S11B—Zn2—N8B—N9B	-7.98 (16)
C7A—N8A—N9A—C10A	-167.0 (2)	C7B-N8B-N9B-C10B	-179.8 (2)
Zn1—N8A—N9A—C10A	17.6 (3)	Zn2-N8B-N9B-C10B	8.2 (3)
N8A—N9A—C10A—N12A	-175.6 (3)	N8B-N9B-C10B-N12B	176.0 (2)
N8A—N9A—C10A—S11A	6.1 (4)	N8B-N9B-C10B-S11B	-3.0 (3)
N9A—C10A—S11A—Zn1	-21.8 (3)	N9B—C10B—S11B—Zn2	-2.6 (2)
N12A—C10A—S11A—Zn1	159.9 (3)	N12B-C10B-S11B-Zn2	178.4 (2)
O1A—Zn1—S11A—C10A	88.84 (13)	O1B—Zn2—S11B—C10B	76.08 (12)
O1B—Zn1—S11A—C10A	169.75 (11)	O1A-Zn2-S11B-C10B	157.12 (9)
N13A—Zn1—S11A—C10A	-83.96 (11)	N8B—Zn2—S11B—C10B	4.67 (9)
N8A—Zn1—S11A—C10A	20.05 (11)	N13B-Zn2-S11B-C10B	-93.94 (10)
O1A—Zn1—N13A—C18A	11.1 (2)	O1B—Zn2—N13B—C18B	-166.50 (17)
O1B—Zn1—N13A—C18A	-67.4 (2)	O1A—Zn2—N13B—C18B	115.40 (17)
N8A—Zn1—N13A—C18A	100.8 (2)	N8B—Zn2—N13B—C18B	-78.33 (18)
S11A—Zn1—N13A—C18A	-172.51 (18)	S11B—Zn2—N13B—C18B	8.51 (18)
O1A—Zn1—N13A—C14A	-177.97 (19)	O1B—Zn2—N13B—C14B	7.98 (19)
O1B—Zn1—N13A—C14A	103.55 (19)	O1A—Zn2—N13B—C14B	-70.11 (19)
N8A—Zn1—N13A—C14A	-88.3 (2)	N8B—Zn2—N13B—C14B	96.16 (18)
S11A—Zn1—N13A—C14A	-1.6 (2)	S11B—Zn2—N13B—C14B	-177.00 (17)
C18A—N13A—C14A—C15A	2.2 (4)	C18B-N13B-C14B-C15B	-0.5 (4)
Zn1—N13A—C14A—C15A	-168.9 (2)	Zn2-N13B-C14B-C15B	-175.1 (2)
N13A—C14A—C15A—C16A	0.4 (5)	N13B-C14B-C15B-C16B	1.4 (4)
C14A—C15A—C16A—C17A	-1.9 (6)	C14B—C15B—C16B—C17B	-1.4 (5)
C15A—C16A—C17A—C18A	0.9 (6)	C15B—C16B—C17B—C18B	0.7 (5)
C14A—N13A—C18A—C17A	-3.3 (4)	C14B—N13B—C18B—C17B	-0.2 (4)
Zn1—N13A—C18A—C17A	167.9 (3)	Zn2—N13B—C18B—C17B	174.5 (2)
C16A—C17A—C18A—N13A	1.8 (5)	C16B—C17B—C18B—N13B	0.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}\!\cdots\!\!A$
N12A—H12B···N9B ⁱ	0.80 (5)	2.40 (5)	3.195 (4)	174 (6)
N12B—H12C…S11A ⁱⁱ	0.77 (3)	2.74 (3)	3.510 (3)	177 (3)
N12B—H12D…N9A ⁱⁱⁱ	0.88 (3)	2.14 (3)	3.012 (3)	173 (3)
C17B—H17B···S11A ^{iv}	0.93	2.91	3.772 (3)	156.
Symmetry codes: (i) <i>x</i> -1, - <i>y</i> +1/2, <i>z</i> -1/2; (ii) <i>x</i> +1, <i>y</i> , <i>z</i>	; (iii) x+1, -y+1/2, z-	+1/2; (iv) $-x+2$, $y-1/2$	2, -z+3/2.	

Fig. 1

Fig. 2